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Аннотация
Цель работы: анализ возможности применения технологии цифровых двойников для обнаруже-

ния аномалий в телекоммуникационных сети с применением технологий искусственного интеллекта 
и обучением на синтетических данных.

Метод исследования: основан на применении математического моделирования, который пред-
полагает созидание цифрового двойника телекоммуникационной сети посредством применения 
синтетически сгенерированных данных, которые имитируют поведение сети, а для обнаружения 
аномалий используется машинное обучение – обучение LSTM-автоэнкодера, с последующей оцен-
кой качества обнаружения аномалий на основе метрик (precision, recall и F1-score).

Результаты исследования: включают разработку модели цифрового двойника телекоммуника-
ционной сети, а также генерацию датасета на основе синтетических данных. В ходе исследования 
продемонстрировано, что может быть создан цифровой двойник телекоммуникационной сети, син-
тетически сгенерированы данные для обучения модели машинного обучения, при помощи которой 
могут быть обнаружены различные аномалии. В дальнейшем модель машинного обучения может 
быть использована в реальных телекоммуникационных сетях связи для обнаружения разного рода 
аномалий.

Научная новизна: заключается в разработке методики генерации синтетических данных с ано-
малиями, которые адаптированы под телекоммуникационные сети, а также в использовании циф-
рового двойника как инструмента для тестирования алгоритмов машинного обучения для обнару-
жения аномалий.
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Введение

Телекоммуникационные сети, которые 
используются в настоящее время для обме-
на информацией, охватывают все большее 
количество территорий, трансформируются  
и модифицируются с течением времени. Они 
предоставляют возможность огромному чис-
лу пользователей обмениваться разного рода 
информацией (звук, изображения, видео), 
являются основой для функционирования  
от мобильных сетей связи до интернета вещей, 
от автономного транспортного сообщения  
до услуг телеприсутствия в сфере здравоох-
ранения. С учетом всеобъемлющего исполь-
зования в подавляющем числе сфер жизни 
необходимость автоматизации наблюдения 
за различными параметрами сети, а так
же управления ими и адаптации становится  

важным элементом для предоставления каче-
ственных услуг связи.

С учетом того, что традиционные методы 
обнаружения аномалий [1], с ростом объема 
трафика в телекоммуникационных сетях, ста-
новятся менее эффективными, необходим 
качественно новый переход от традиционных 
методов к более модернизированным. Более 
важным является вопрос обнаружения разного 
рода аномалий, таких как DDoS-атаки, пере-
грузка каналов, технические сбои, которые 
впоследствии могут привести к ухудшению 
качества предоставляемых услуг связи или  
к временному выходу из строя оборудования.

С учетом вышеизложенного одним из воз-
можных решений, которое может повысить 
устойчивость и безотказность системы, явля-
ется технология цифрового двойника.
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1. Теоретические основы цифровых 
двойников в телекоммуникациях

1.1. Понятие и определение цифрового 
двойника

Впервые концепция цифрового двойника, 
как виртуальной копии физического объекта, 
была предложена в 2002 году Майклом Грив-
сом. Цифровой двойник может быть исполь-
зован для исследования влияния различных 
воздействий на моделируемый объект, не под-
вергая риску реальный объект. На данный мо-
мент концепция активно развивается и стан-
дартизируется в различных сферах [2].

Согласно стандарту, BS ISO/IEC 30173, 
цифровой двойник – это «виртуальное пред-
ставление физического объекта или системы, 
которое используется для понимания, прогно-
зирования и оптимизации характеристик и по-
ведения физического объекта».

В телекоммуникационных системах цифро-
вой двойник представляет из себя виртуаль-
ную модель сети, которая соединена с физи-
ческой сетью и получает актуальные данные 
при помощи телеметрии и позволяет следую-
щее [3]:

∎	 моделировать поведение сети при различ-
ном влиянии на сеть;

∎	 прогнозировать сбои и оптимизировать ре-
сурсы сети;

∎	 тестировать алгоритмы управления без 
ущерба для физической сети;

∎	 автоматизировать процессы мониторинга 
сети.

1.2. Архитектура цифрового двойника 
телекоммуникационной сети

Архитектура цифрового двойника телеком-
муникационной сети в большинстве случаев 
состоит из следующих частей [4]:

1. Физический уровень, который	 содержит 
реальные компоненты сети:

∎	 базовые станции;
∎	 устройства пользователей;
∎	 ядро сети;
∎	 различное сетевое оборудование: комму-

таторы, маршрутизаторы, серверы.

2. Цифровой уровень (модель), который со-
держит виртуальное представление физиче-
ских объектов:

∎	 модели базовых станций, каналов связи, 
пользователей;

∎	 алгоритмы расчета качества сигнала, про-
пускной способности, задержки;

∎	 модели поведения пользователей (к приме-
ру активность и мобильность).

3. Аналитический уровень, который содер-
жит обработку данных и система принятия ре-
шений:

∎	 сбор и хранение телеметрии;
∎	 анализ в реальном времени;
∎	 управление сетью (настройка параметров 

телекоммуникационной сети для предо-
ставления услуг связи должного уровня).

1.3. Ключевые метрики телекоммуника-
ционных сетей

Для создания цифрового двойника в целях 
предиктивной защиты от различных анома-
лий в телекоммуникационной сети необходи-
мо подобрать набор соответствующих пара-
метров [5, 6]:

1. Active UE: отражает число устройств, на-
ходящихся в зоне покрытия сети и ведущие 
обмен данными в настоящий момент времени. 
Данный параметр влияет на нагрузку телеком-
муникационной сети, на число потребляемых 
ресурсов, а также на качество обслуживания.

2. DL Traffic: обозначает объем данных, пе-
редаваемых от сети к устройствам (пользова-
телям сети). Данный параметр особо важен 
для планирования пропускной способности 
сети и распределения нагрузки между пере-
дающим оборудованием.

3. RSRP (Received Signal Reference Power, 
измеряется в дБм): данный параметр обо-
значает мощность сигнала, принимаемого 
устройством от базовой станции и принадле-
жит к перечню ключевых показателей каче-
ства радиоканала.

4. Active Sessions: данный параметр оз-
начает количество активных сессий в сети. 
Данный параметр близок по значению к Active 
UE, но может отличаться от него в определен-
ных случаях (к примеру, когда пользователь  
в данный момент времени одновременно ве-
дет разговор и пользуется интернетом).

1.4. LSTM-автоэнкодеры, как инструмент 
обнаружения аномалий

Для детектирования аномалий в телеком-
муникационных сетях анализируют временные 
ряды с высокой размерностью и сложными 
зависимостями. В качестве инструмента для 
решения данной задачи могут быть использо-
ваны методы машинного обучения, которые 
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способны обучиться нормальным паттернам  
и определять отклонения от них для выявле-
ния аномалий в сети [7].

Можно выделить следующие достоинства 
автоэнкодеров:

∎	 возможно обучение без учителя (не требу-
ются размеченные данные для всех типов 
аномалий);

∎	 способность обрабатывать многомерные 
данные (могут одновременно учитывать 
UE, трафик, RSRP и сессии в процессе мо-
ниторинга);

∎	 обладают высокой эффективностью при 
грамотном обучении и настройке.

LSTM выбран исходя из следующих причин:

∎	 работа с последовательностями, т.е. обла-
дает способностью учета временных зави-
симостей (например, рост трафика за по-
следний период времени);

∎	 устойчивость к шуму (благодаря внутрен-
ним механизмам (забывание, вход, выход));

∎	 предрасположенность к работе с длинными 
последовательностями (важно для теле-
коммуникационных сетей, в моментах ано-
малии могут проявляться в течении времени.

1.5. Методология обнаружения анома-
лий на основе ошибки восстановления

Основная идея метода – сначала обучить 
автоэнкодер на нормальных данных, для того 
чтобы он мог точно восстанавливать их. По-
сле обучения на нормальных данных, прове-
сти обучения на тестовых данных (включая 
аномалии), где вычисляется ошибка восста-
новления (MSE) [8], а если ошибка превышает 
порог – считается, что произошла аномалия.

Пусть X∈RT×D – входная последователь-
ность длиной T с D признаками.

Автоэнкодер предсказывает X̂ = fθ(X).
Ошибка восстановления может быть опре-

делена по следующей формуле:

	 MSE = 1
T × D 

T

∑
t=1

 
D

∑
d=1

(Xt,d – X̂t,d)2,	 (1)

где X – исходная последовательность, X̂ – вос-
становленная последовательность, T – длина 
последовательности, D – число признаков.

Порог τ определяется как q-й перцентиль 
ошибки на нормальных данных по следующей 
формуле:

	 τ = percentile(MSEnormal,q).	 (2)

Аномалия в телекоммуникационной сети 
обнаруживается, если MSE > τ.

2. Практическая реализация цифрового 
двойника телекоммуникационной сети

2.1. Генерация синтетических телемет
рических данных

В целях создания цифрового двойника 
была разработан процедура генерации синте-
тических данных, которые имитируют работу 
телекоммуникационной сети в течение суток 
(24 часов) с шагом 10 секунд. Общее количе-
ство временных меток равно 8640, что соот-
ветствует 24 часам × 60 минут × 6 (интервалов 
в минуту).

Основой для создания нормальной нагруз-
ки сети стал суточный профиль, который ха-
рактерен для городских сетей, определяется 
по следующей формуле:

	 load_ profile(t) =  0,3 + 0,7 ⋅ 

	 ⋅ [exp(–(h(t) – 8)2

8 ) + exp(–(h(t) – 20)2

10 )],	 (3)

где h(t) = [t/360] mod 24 – текущий час суток, 
t – номер временного интервала.

На основе данного профиля были сгенери-
рованы четыре ключевые метрики, которые 
представлены в таблице 1.

Таблица 1. 
Ключевые метрики

№ 
п/п 

Метрика Диапазон

1 Active UE 10–300

2 DL Traffic Mbps 0–150

3 RSRP dBm (–120) – (–70)

4 Active Sessions 5–400

Здесь ε – случайный шум, имитирующий 
флуктуации реальной сети.

Физический смысл метрик:

∎	 Active UE – означает число активных поль-
зовательских устройств, которое напрямую 
связано с нагрузкой;

∎	 DL Traffic – означает объем передаваемых 
данных и важен для планирования ресур-
сов телекоммуникационной сети;

∎	 RSRP – означает уровень сигнала и опре-
деляет качество связи;

∎	 Active Sessions – означает число актив-
ных сессий и коррелирует с UE, но может 
отличаться от UE из-за мульти-сессий на 
устройствах пользователей.
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2.2. Внедрение аномалий
В целях проверки эффективности и рабо-

тоспособности цифрового двойника в син-
тетические данные были искусственно вне-
дрены аномалии, характерные для реальных 
телекоммуникационных сетей [9–12]. Первая 
аномалия – технический сбой – в данном 
случае моделируется ситуация при которой 
происходит намеренное ухудшение качества 
радиоканала вследствие отказа оборудо-
вания или внешних помех. Данная анома-
лия была симулирована в интервале с 12:00 
до 12:10, когда уровень сигнала (показатель 
RSRP) искусственно понижался до диапазона  
от –115 до –105 дБм, что соответствует кри-
тично низкому качеству связи. В тоже время, 
когда было симулировано снижение качества 
связи, в процессе мониторинга наблюда-
лось снижение загрузочного объема трафика  
на 70 %, что можно обусловить ухудшением 
качества соединения с активными пользова-
телями, число которых также демонстриро-
вало некоторое снижение. Вышеописанная 
ситуация отражает обычный сценарий сбоя  
в сети, при котором падение качества сигна-
ла приводит к ухудшению сервиса и, следова-
тельно, к потере пользователей. Вторая ано-
малия – DDoS-данный тип атаки имитирует 
злонамеренную нагрузку на сеть, при которой 
объем передаваемых данных стремительно 
возрастает, но при этом не уваливается чис-
ло активных устройств пользователей [13, 14].  
Аномалия с имитацией DDoS-атаки была си-
мулирована во временной период с 18:30 до 
18:45, когда DL Traffic искусственно доводился  

до уровня 120–200 Мбит/с, что значительно 
превышает нормальные значения для данного 
времени суток, при этом количество активных 
пользователей в сети оставалось неизмен-
ным. Состояние системы в данный момент 
времени с подобными параметрами соответ-
ствует стандартным признакам DDoS-атаки, 
т.к. рост трафика не сопровождается ростом 
пользовательской активности, что соответ-
ственно указывает на искусственное увеличе-
ние нагрузки на систему. Соответственно две 
вышеописанные аномалии были отмечены 
метками – «FAILURE» для технического сбоя 
и «DDOS» для атаки – что позволит в даль-
нейшем использовать их для оценки качества 
разработанной модели для обнаружения ано-
малий в сети.

2.3. Визуализация синтетических данных
На рисунке 1 представлены графики трех 

ключевых метрик за 24 часа: DL Traffic, RSRP 
и Active UE. Красные полупрозрачные области 
выделяют зоны аномалий:

Результаты анализа рисунка 1 позволили 
сделать следующие выводы:
∎	 в зоне технического сбоя (с 12:00 до 12:10) 

наблюдается резкое падение показателей 
RSRP и DL Traffic, что соответственно соче-
тается с понижением количества пользова-
телей;

∎	 во временном промежутке с DDoS-атакой 
(18:30–18:45) наблюдается резкое повыше-
ние объема трафика без роста количества 
активных пользователей, что является мар-
кером намеренного искусственного повы-
шения нагрузки;

Рис. 1. Визуализация синтетических телеметрических данных 
телекоммуникационной сети с внедренными аномалиями
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∎	 нормальные параметры в телекоммуника-
ционной сети в соответствии с суточным 
профилем с увеличением нагрузки в 8:00 
и 20:00 соответствуют человеческой актив-
ности.

2.4. Подготовка данных для обучения 
модели

В целях качественного обучения модели 
автоэнкодера были подготовлены данные 
следующим образом:

∎	 выбраны признаки, на основе которых фор-
мируется результат (Active_UE, DL_Traffic_
Mbps, RSRP_dBm, Active_Sessions);

∎	 проведена нормализация признаков: ис-
пользован MinMaxScaler для масштабиро-
вания всех признаков в диапазоне от 0 до 1 
включительно;

∎	 формирование временных интервалов, где 
для работы с LSTM использованы последо-
вательности длиной 60 шагов (10 минут).

2.5. Архитектура и обучение LSTM-авто-
энкодера

Для обнаружения аномалий была выбра-
на архитектура LSTM-автоэнкодера, которая  
хорошо работает с временными рядами и спо-
собна учиться нормальным паттернам, выяв-
ляя отклонения.

Модель создана с использование библио-
теки TensorFlow [15] и построена на следую-
щей архитектуре из четырех блоков:

∎	 Encoder: LSTM слой с 32 нейронами – пред-
назначен для сжатия входной последова-
тельности в скрытый массив данных;

∎	 RepeatVector: создает копию скрытого мас-
сива данных для каждого временного ин-
тервала;

∎	 Decoder: LSTM с 32 нейронами – восстанав-
ливает исходную последовательность;

∎	 TimeDistributed Dense: выходной слой, пред-
назначенный для предсказывания значения  

определенных признаков на каждом вре-
менном интервале.
На основе синтетически сгенерированных 

данных [16] модель была обучена на нормаль-
ных данных (8431 последовательностей) в те-
чение 15 эпох с размером батча равным 32  
и размером валидационной выборки равным 
10 % (от датасета), что в свою очередь соот-
ветствует рисунку 2.

На графике (рис. 2) можно обнаружить, что 
функция потерь на тренировочной и валида-
ционной выборке имеет тенденцию стабиль-
ного снижения, следовательно, модель имеет 
хорошую сходимость. После 15 эпох функция 
потерь достигает значения ~0.005, что в свою 
очередь свидетельствует о том, что модель 
научилась восстанавливать нормальные пат-
терны.

2.6. Обнаружение аномалий на полном 
датасете

После обучения модель была применена 
к полному датасету (включая аномалии). Для 
каждой последовательности вычислялась 
ошибка восстановления (MSE) согласно фор-
муле 1. Порог для определения аномалии был 
установлен как 95-й перцентиль ошибки на 
нормальных данных на основе формулы 2.  
В данному случае аномалия обнаруживается, 
если MSE > τ.

2.7. Оценка качества обнаружения ано-
малий

Для оценки эффективности модели были 
рассчитаны стандартные метрики Precision, 
Recall, F1 [17] согласно формулам 4, 5, 6 соот-
ветственно:

	 Precision = TP
TP + FP;	 (4)

	 Recall = TP
TP + FNTP/(TP+FN);	 (5)

	 F1 = 2 × Precision × Recall
Precision + Recall ,	 (6)

 

Рис. 2. График потерь
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где TP – истинно положительные, FP – ложно 
положительные, FN – ложно отрицательные.

В итоге были получены следующие резуль-
таты:

∎	 Precision 89,2 % – означает, что из всех 
обнаруженных аномалий, 89,2 % действи-
тельно являются аномалиями;

∎	 Recall 94,1% – означает, что модель обнару-
жила 94,1 % всех реальных аномалий;

∎	 F1-score 91,6% – означает, что модель эф-
фективно определяет истинные случаи,  
с низкой вероятностью ошибки.

2.8. Визуализация результатов обнару-
жения аномалий

На рисунке 3 представлена динамика 
ошибки восстановления для всех временных 
диапазонов, которая получена в результате 
работы LSTM-автоэнкодера. На основе визу-
ального анализа графика можно сделать вы-
вод о способности модели обнаруживать от-
клонения от нормального поведения сети на 
основе анализа различных временных после-
довательностей на основе ряда параметров.

На основе анализа графика (рис. 3) можно 
сделать следующие выводы:

1. На подавляющей части временного диа
пазона ошибка восстановления имеет низкое 
значение и не превышает 0,01, что также сви-
детельствует о том, что модель была каче-
ственно обучена на нормальных данных и спо-
собна восстанавливать нормальные паттерны 
телеметрии.

2. На временном шаге ~4200 можно наблю-
дать резкий скачок ошибки восстановления, 
который в пике достигает ~0,16, что в более 
чем 10 раз больше порога, который равен 
~0,012, при этом данный скачок совпадает  
с розовой областью, которая обозначает ано-
малию и соответствует временному диапазо-
ну технического сбоя, который симулирован 
во временном диапазоне с 12:00 до 12:10.

3. Следующий рост ошибки MSE = ~0,13 
восстановления наблюдается на временном 
шаге ~6700, который соответствует времен-
ному диапазону симулирования DDoS-атаки  
c 18:30 до 18:45. Пик роста ошибки восстанов-
ления совпадает с областью аномалии и также 
значительно превышает пороговое значение.

4. Для баланса между чувствительностью 
и количеством ложных срабатываний был вы-
бран порог на уровне 95-го перцентиля, след-
ствием чего модель адекватно реагирует на 
небольшие естественные всплески активно-
сти, а при значительных всплесках правильно 
детектирует аномалии.

5. Возможность вывода актуального состоя
ния телекоммуникационной сети в визуальном 
формате (в качестве примеру можно приве-
сти график, который отображен на рисунке 3)  
предоставляет оператору сети возможность 
своевременно реагировать на возникающие 
аномалии с учетом возможности записи вре-
мени начала и идентификации типа атаки.

Объединяя вышеизложенное можно сде-
лать вывод, что предложенный подход на ос-
нове LSTM-автоэнкодера, обученного на син-
тетических данных, обладает возможностью 
надежно детектировать как технические сбои, 
так и DDoS-атаки, путем анализа временных 
паттернов телеметрии.

2.9. Выводы по практической реализации
В итоге цифровой двойник позволил:

∎	 генерировать правдоподобные синтетиче-
ские данные с подконтрольными аномалия
ми;

∎	 смоделировать и обучить LSTM-автоэнко-
дер для обнаружения аномалий;

∎	 достигнуть показателей качества по метри-
ке F1-score = 0,916, что является показате-
лем качества модели;

∎	 графически отобразить работу модели на 
примере двух типов аномалий (технического 
сбоя и DDoS-атаки).

 

Рис. 3. Обнаружение аномалий с помощью цифрового двойника
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Выше представленные результаты под-
тверждают возможность применения циф-
ровых двойников в целях обучения, тестиро-
вания и внедрения алгоритмов обнаружения 
аномалий в телекоммуникационных сетях.

3. Анализ результатов и обсуждение

3.1. Интерпретация метрик качества
Ссылаясь на раздел 2.7., модель продемон-

стрировала следующие показатели качества:

∎	  Precision: 0,892;
∎	  Recall:	 0,941;
∎	  F1-score: 0,916.

Основываясь на показателях перечислен-
ных метрик, модель обладает высокой эф-
фективности модели в задаче обнаружения 
аномалий. Рассмотрим каждый показатель 
подробнее.

Precision (точность) = 0,892. Точность отра-
жает количество истинно аномальных собы-
тий среди тех, которые модель классифициро-
вала как аномалии. Значение 89,2 % означает, 
что на каждые 100 обнаруженных аномалий 
89 действительно истинные, а 11 – соответ-
ственно ложные срабатывания. Достигнутый 
уровень считается приемлемым для систем 
мониторинга, в которых лишние оповещения 
не влияют на работу сети и не выводят ее из 
строя.

Recall (полнота) = 0,941 – данная метрика 
отражает способность модели обнаруживать 
все реальные аномалии. Значение 94,1 % соот
ветствует тому, что модель успешно обна-
руживает 94 из 100 реальных аномалий, что 
действительно важно в телекоммуникацион-
ных сетях, где какое-либо пропущенное нега-
тивное влияние может отрицательно сказать-
ся на работоспособности сети или полностью 
вывести ее из строя.

F1-score = 0,916. F1-мера, отражающая гар-
моническое среднее между точностью и полно-
той и отражает баланс между данными харак-
теристиками. Значение 0,916 подтверждает 
тот факт, что был достигнут консенсус меж-
ду точностью и полнотой, т.е. модель имеет 
небольшое число ложных срабатываний и в 
тоже время правильно выявляет большинство 
аномалий.

Исходя из удовлетворительных значений 
перечисленных метрик можно сделать вывод, 
что модель может быть использована в систе-
мах мониторинга телекоммуникационных се-
тей.

3.2. Анализ причин ложных срабатыва-
ний и пропусков

С учетом достаточно высоких показателей 
метрик, модель все же допускает ошибки. На 
графике (рис. 3) присутствуют участки, на ко-
торых ошибка восстановления превышает 
заданный порог, но не детектируется как ис-
тинная аномалия (розовая область). Данные 
случаи могут трактоваться следующими фак-
торами:

1. Переходные процессы и шум.
В начале и в конце временного диапазона 

могут наблюдаться небольшие скачки, кото-
рые могут быть связаны с процессами запу-
ска, остановки и шумом в данных. Примером 
является промежуток от 2000 до 2500 шага, 
где наблюдается небольшой рост ошибки вос-
становления, которая превышает порог и не 
совпадает с истинными аномалиями. Данный 
случай может быть вызван случайными про-
цессами, которые модель интерпретирует как 
отклонение от нормального состояния.

2. Пороговое значение.
С учетом того, что порог установлен на 

уровне 95 перцентиля, для определенного пе-
речня аномалий, которые могут происходить 
в телекоммуникационных сетях, он (порог) мо-
жет быть завышен, что приведет к тому, что 
аномалия не будет своевременно обнаружена. 
В обучающих данных также могут присутство-
вать выбросы, которые в итоге «приподнима-
ют» порог вверх, что способствует пропуску 
незначительных аномалий. Для решения дан-
ного случая может быть использован динами-
ческий порог, который основан на статических 
методах (например, mean + 3σ).

3. Ограничения модели.
При использовании LSTM-автоэнкодера, 

который обучен на нормальных данных, авто
энкодер будет пытаться восстановить их, при 
этом, если аномалия будет иметь форму, ко-
торая близка к нормальному паттерну (в ка-
честве примера можно привести медленный 
рост числа активных пользователей), модель 
может не обнаружить аномалию. Решением 
данного случая может быть использование 
добавочных признаков (скорость изменения 
RSRP) а также задействование ансамблевых 
методов.

3.3. Влияние параметров на качество 
модели

На успех детектирования аномалий влияет 
следующий перечень параметров:
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1. Длина временного окна.
Грамотный выбор временного диапазона 

(60 шагов равные по длительности 10 мину-
там) позволяет модели учитывать кратко-
срочные зависимости без излишней нагрузки  
на вычислительные ресурсы оборудования, 
но для обнаружения аномалий, которые по 
длительности меньше временного диапазо-
на окна, необходим подбор соответствующей 
длины временного окна.

2. Количество нейронов в LSTM.
Каждый LSTM-слой в архитектуре моде-

ли использует 32 нейрона, что обеспечивает 
необходимую емкость для корректного обу-
чения, если увеличить число нейронов до 64 
или до 128 при грамотном обучении позволит 
повысить точность модели (но увеличивается 
время обучения и риск переобучения).

3. Количество эпох.
В данной исследовании модель обуча-

лась в течении 15 эпох, чего достаточно для 
ее сходимости. Дальнейшее увеличение чис-
ла функция потерь продолжит снижаться, но 
незначительно, что указывает на достижение 
плато (рис. 2), т.е. дальнейшие обучение моде-
ли без изменения архитектуры и увеличения 
датасета не позволит увеличить качество мо-
дели.

Заключение

В рамках проведенного анализа было вы-
явлено, что подход с применением цифрово-
го двойника и LSTM-автоэнкодера обладает 
требуемыми качествами для обнаружения 
аномалий. Разработанная модель показывает 

высокие показатели по раду метрик и с высо-
кой вероятностью обнаруживает технические 
сбои и DDoS-атаки. При этом каждое «свое 
решение» модель основывает не только на 
основе текущего момента времени, но также 
на основе предыдущих параметров, что дела-
ет ее более подходящим вариантом для теле-
коммуникационных сетей, чем традиционные 
методы.

Однако, учитывая ранее изложенные ре-
зультаты исследований в камках данной ста-
тьи, модель имеет незначительные ограни-
чения, которые связаны с чувствительностью  
к различным шумам, конечному набору при-
знаков и заданному уровню порога. В целях 
повышения качества модели рекомендуется:

∎	 применять более сложные архитектуры  
(к примеру, CNN-LSTM и Transformer);

∎	 использовать при оценке качества модели 
дополнительные метрики (SINR, Latency, 
Handover Count);

∎	 расширять количество параметров, на ос-
нове которых производится многомерный 
анализ, до перечня параметров в реальной 
сети.

Перечисленные выше рекомендации поз
волят создать эффективный инструмент для 
автоматизированного мониторинга телеком-
муникационных сетей, который будет свое
временно реагировать на разного рода угрозы 
и предотвращать их прежде чем они нанесут 
деструктивное воздействие, которое снизит 
качество предоставляемых услуг связи или 
выведет оборудование из строя.
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Abstract
The aim of the work is to analyze the possibility of using digital twin technology to detect anomalies  

in telecommunication networks using artificial intelligence technologies and training on synthetic data.
Research method: is based on the use of mathematical modeling, which involves the creation of  

a digital twin of a telecommunications network through the use of synthetically generated data that simulate  
the behavior of the network, and machine learning is used to detect anomalies – training of an LSTM 
autoencoder, with subsequent assessment of the quality of anomaly detection based on metrics (precision, 
recall and F1-score).
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Results of the study: include the development of a digital twin model of a telecommunications network,  
as well as the generation of a dataset based on synthetic data. In the course of the study, it was demonstra
ted that a digital twin of a telecommunications network can be created, data can be synthetically generated  
to train a machine learning model, with the help of which various anomalies can be detected. telecommuni
cation networks to detect various kinds of anomalies.

Scientific novelty: lies in the development of a methodology for generating synthetic data with anomalies 
that are adapted to telecommunication networks, as well as in the use of a digital twin as a tool for testing 
machine learning algorithms to detect anomalies.

References
1.	 Popov A. A. Metody obnaruzhenija anomalij v setevom trafike // V sbornike: Nauka, innovacii, obrazovanie: 

aktual'nye voprosy XXI veka. Sbornik statej XIV Mezhdunarodnoj nauchno-prakticheskoj konferencii. 
Penza, 2025. S. 30–33.

2. 	 Shpak P. S., Sycheva E. G., Merinskaja E. E. Koncepcija cifrovyh dvojnikov kak sovremennaja tendencija 
cifrovoj jekonomiki // Vestnik Omskogo universiteta. Serija: Jekonomika. 2020. T. 18. № 1. S. 57–68.

3. 	 Kanaev A. K., Stepanova A. R. Cifrovye dvojniki v telekommunikacijah // Nauchno-tehnicheskaja konfe
rencija Sankt-Peterburgskogo NTO RJeS im. A.S. Popova, posvjashhennaja Dnju radio. 2024. № 1(79). 
S. 228–230.

4. 	 Afonin I. G., Kucherjavyj E. A., Osipov D. V., Morozov A. V. Algoritmy ML dlja postroenija cifrovyh dvojnikov 
v 5G // Vestnik svjazi. 2024. № 12. S. 29–30.

5. 	 Talibaeva A. I., Ramazanov M. B., Sajken D. R., Hisamutdinov R. M. Issledovanie tehnologicheskih 
parametrov telekommunikacionnyh setej svjazi: metody ocenki proizvoditel'nosti besprovodnyh setej //  
V sbornike: Global Challenges – Scientific Solutions II. proceedings. Antwerp, 2020. S. 225–227.

6. 	 Novikovskij K. V. Analiz parametrov i modeli kachestva v sovremennyh telekommunikacionnyh sistemah //  
Vestnik Voronezhskogo instituta vysokih tehnologij. 2025. № 2(53).

7. 	 Adamovskij E. R., Bogush R. P., Chertkov V. M. Issledovanie jeffektivnosti LSTM nejronnyh setej dlja prog
nozirovanija zanjatosti kanal'nyh resursov na osnove dannyh karty radiosredy kognitivnoj sistemy svjazi //  
V sbornike: INFORMATIKA: PROBLEMY, METODY, TEHNOLOGII. Materialy XXIV Mezhdunarodnoj 
nauchno-prakticheskoj konferencii im. Je.K. Algazinova. Voronezh, 2024. S. 148–153.

8. 	 Kukurhoev A. M. Funkcija poter' MSE i MAE // V sbornike: Nauka, obrazovanie, innovacii: aktual'nye 
voprosy i sovremennye aspekty. sbornik statej XV Mezhdunarodnoj nauchno-prakticheskoj konferencii  
v 2 chastjah. Penza, 2022. S. 85–86.

9. 	 Amosov O. S., Amosova S. G., Ivanov Ju. S., Zhiganov V. S. V. Ispol'zovanie glubokih nejronnyh setej dlja 
raspoznavanija anomalij setevogo trafika v informacionno-telekommunikacionnyh sistemah predprijatij //  
V knige: Upravlenie razvitiem krupnomasshtabnyh sistem MLSD'2019. Materialy dvenadcatoj mezhdu
narodnoj konferencii Nauchnoe jelektronnoe izdanie. Pod obshhej red. S. N. Vasil'eva, A. D. Cvirkuna. 
2019. S. 968–971.

10.	Protasova M. A. Nejrosetevoj klassifikator anomalij telekommunikacionnoj seti // V sbornike: 
Nejroinformatika–2015. XVII Vserossijskaja nauchno-tehnicheskaja konferencija s mezhdunarodnym 
uchastiem: sbornik nauchnyh trudov. Otvetstvennyj redaktor A. G. Trofimov. 2015. S. 138–148.

11.	Zhivodernikov A. Ju., Kovajkin Ju. V., Lebedev P. V. Analiz istochnikov setevyh anomalij v sistemah 
upravlenija telekommunikacionnymi setjami // V sbornike: Problemy tehnicheskogo obespechenija vojsk v 
sovremennyh uslovijah. Trudy IV mezhvuzovskoj nauchno-prakticheskoj konferencii. 2019. S. 298–301.

12.	Akyev G. A. Sovremennye metody i algoritmy monitoringa telekommunikacionnyh setej // Innovacionnaja 
nauka. 2025. № 2-2. S. 37–39.

13. Jarovoj R. V., Rjabov G. A., Karganov V. V. Kiberbezopasnost' v mire infotelekommunikacij: vyzovy  
i strategii zashhity // V sbornike: Innovacionnaja dejatel'nost' v Vooruzhennyh Silah Rossijskoj Federacii. 
Trudy vsearmejskoj nauchno- prakticheskoj konferencii. Sankt-Peterburg, 2023. S. 373–377.

14.	Zelenskij M. D. DDoS-ataki: tipy atak, ustranenie DDoS-atak // V sbornike: Studencheskaja nauka 
dlja razvitija informacionnogo obshhestva. sbornik materialov IV Vserossijskoj nauchno-tehnicheskoj 
konferencii: v 2-h tomah. 2016. S. 241–243.

15.	Jedel' G. E. Glubokoe obuchenie s ispol'zovaniem biblioteki TensorFlow // Jelektronnye sredstva i sistemy 
upravlenija. Materialy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii. 2020. № 1-2.  
S. 162–164.

16.	Chajkin G. A. Sozdanie sinteticheskih dannyh pol'zovatel'skoj aktivnosti na osnove voprosno-otvetnyh 
tekstovyh dannyh // Processy upravlenija i ustojchivost'. 2025. T. 12. № 1. S. 417–421.

17.	Nikkel' K. E., Sosunov A. A. Klassifikacija dannyh: metriki ocenki kachestva modelej i algoritmy // V sbornike: 
Cifrovizacija: novye trendy i opyt vnedrenija. Sbornik statej Mezhdunarodnoj nauchno-prakticheskoj 
konferencii. Ufa, 2024. S. 39–44.

DOI: 10.21681/3034-4050-2026-1-42-51

СИСТЕМНЫЙ АНАЛИЗ СИСТЕМ ВОЕННОГО НАЗНАЧЕНИЯУДК 004.85


